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Classical theory asserts that several electromagnetic waves cannot interact with matter if they interfere destruc-
tively to zero, whereas quantum mechanics predicts a nontrivial light-matter dynamics even when the average
electric field vanishes. Here, we show that in quantum optics, classical interference emerges from collective
bright and dark states of light, i.e., particular cases of two-mode binomial states, which are entangled super-
positions of multi-mode photon-number states. This makes it possible to explain wave interference using the
particle description of light and the superposition principle for linear systems only. It also sheds new light on an
old debate concerning the origin of complementarity.

The quest for understanding what light is and what its prop-
erties are comes from the ancient Greek school of philoso-
phy [1]. Since then, the subject has been extensively stud-
ied, with prominent contributions from Newton and Huygens,
the former defending the corpuscular and the latter advocating
the wave nature of light [2, 3]. This dispute remained unre-
solved until, among others, Young performed experiments on
light diffraction [4, 5] and Maxwell developed a unified the-
ory of electromagnetism which includes a wave equation for
the light field [6]. This effectively removed any doubts about
the wave nature of light. However, in 1905, Einstein explained
the photoelectric effect by reintroducing the idea of light par-
ticles [7] (later reconsidered by Lamb and Scully [8]). Since
then, and with the advent of quantum physics, light is asso-
ciated with both properties, wave and particle. Depending on
the experiment, one or the other aspect manifests itself: the
interference of delocalized waves or the propagation of parti-
cles along well-defined trajectories. Although this is textbook
knowledge by now, it was highly debated at its time. For ex-
ample, Millikan argued that the particle aspect “flies in the
face of the thoroughly established facts of interference” [9].

Here we resolve Millikan’s objection and show that the
interference between independent radiation modes, usually
taken as an undoubted signature of the wave character, has
a purely corpuscular explanation. For this we incorporate
a full quantum-mechanical description of the measurement
process in terms of energy exchange between the light and
a sensor atom, and carry out a detailed analysis in terms of
multi-mode collective states of the radiation field. This al-
lows us to identify states that can be coupled with matter,
dubbed bright states, and states that do not couple with mat-
ter, called dark states. Such states are also known as sub- or
super-radiant states [10], or generalized ground states (for the
dark states) [11], and are particular cases of two-mode bino-
mial states [12–20]. Surprisingly, such physical interpretation
in terms of particle states (that either couple or do not cou-
ple with detectors) have never been used so far to explain the
interference patterns that emerge, e.g., in optical double-slit
experiments [21].

We then discuss the rather counter-intuitive result that a
vanishing photon-detection probability at locations of destruc-

tive interference does not prove the absence of photons. We
argue, instead, that these photons are in a state that is per-
fectly dark for the employed sensor atom. In other words, we
replace Glauber’s explanation of constructive or destructive
interference in terms of superposed transition amplitudes [22]
by a description where the light is in a state that can or can-
not excite the atom, respectively. This leads to a new view on
which-path detection in double-slit experiments [23–25] as,
contrary to the standard notion, photons always reach the dark
regions, independently of the presence of the detector.

We also show that the collective states of the light fall into
three distinct classes: perfectly dark, maximally superradiant,
and intermediate. Interestingly, classical interference, fully
destructive or constructive, is described by a superposition of
perfectly dark or maximally superradiant states only (see the
illustration in Fig.1(a)), but any intermediate quantum state
has no counterpart in classical theory, a feature which could be
verified in measurements of the first-order correlation function
only [26].

According to the quantum theory of optical coherence in-
troduced by Glauber [27, 28], the statistical properties of a
given field can be derived from its electrical field operator

E(r, t) = E(+)(r, t) + E(−)(r, t), (1)

with E(+)(r, t) and E(−)(r, t) the positive and negative fre-
quency parts, respectively. Quantum mechanically, these parts
are proportional to the photon annihilation and creation oper-
ators, that is, E(+)(r, t) ∝ a and E(−)(r, t) ∝ a†. Still ac-
cording to [27, 28], the probability of a photon from a single
mode in a given state |Ψ⟩ being absorbed by a sensor atom is
proportional to

⟨Ψ|E(−)E(+)|Ψ⟩ ∝ ⟨Ψ|a†a|Ψ⟩. (2)

This expression comes from the energy-exchange interaction
between the field and the sensor, described by the Hamiltonian
(in the rotating-wave approximation)

H = E(+)(r, t)σ+ + E(−)(r, t)σ−, (3)

with σ+ (σ−) the raising (lowering) operators that induce
transitions between ground |g⟩ and excited |e⟩ states of the
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FIG. 1. (a) Double slit experiment: Two waves ψ1(ϕ1 = k1 · r1) and ψ2(ϕ2 = k2 · r2) meet to form fringes which can be interpreted in
terms of interference in the classical theory, and of dark and bright states in our approach. In the latter, there is light (photons) at all points,
and the dark and bright regions are explained microscopically in terms of the interaction between the atoms and the collective states that excite
(bright regions) and that do not excite (dark regions). (b) Dicke-like ladder for two light modes with the left side containing the maximally
superradiant states (MSS, in blue), and the right one with the perfectly dark states (PDS, in red). Unlike the atomic case, the number of
excitations is not bounded (N → ∞). Also, the interaction between the collective modes of the field and matter occurs in a way that induces
decays from the leftmost (bright) states to the rightmost (dark) states, so that, upon reaching the perfectly dark states, the field decays stops
happening and, consequently, the field stops exciting the matter.

sensor atom. From Eq. (2) one can easily see that, for single
mode fields, only zero-intensity (vacuum) fields are unable to
excite the sensor.

For two-mode fields, and from a quantum perspective, the
situation is much more interesting. To see this, we evaluate
the probability of exciting the sensor using the eigenstates of
the positive-frequency operator with null eigenvalues, that is,
E(+)(r, t)|Ψ⟩ = 0 or, equivalently,H|Ψ⟩|g⟩ = 0. For a single
mode, only the vacuum state satisfies this condition. But as
shown below, multi-mode fields allow for a plethora of such
states, even states with many photons in each mode. In the
context of cavity quantum electrodynamics, the states which
carry photons but are unable to excite an atom were dubbed
“generalized ground states” [11], but here we decide to name
them perfectly dark states (PDSs) since the sensor cannot see
the field whenever it is in such a state.

To address the multi-mode case, we consider two modes, A
and B, represented by their respective annihilation (creation)
operators a and b (a† and b†), and a relative phase between
them given by θ. In this case, the positive frequency operator
can be written as

E(+)(r, t) ∝ (a+ beiθ) (4)

and, consequently, the Hamiltonian (3) becomes H = g(a +
beiθ)σ+ + g(a† + b†e−iθ)σ−. Here, g = g(r) denotes the
coupling constant between the sensor and the two modes, as-
sumed equal for both modes for simplicity, and r is the sen-
sor (atom) position. Then, we introduce the symmetric and
antisymmetric collective operators c = (a + beiθ)/

√
2 and

d = (−ae−iθ + b)/
√
2 [17, 29], respectively. For any number

n ≤ N , we then write the states with a total number of N
excitations |ψN

n (θ)⟩ in the collective ({c, d}) and in the bare

({a, b}) basis as [13, 16, 17]

|ψN
n (θ)⟩ ≡ |n,N − n⟩c,d =

(
c†
)n (

d†
)N−n√

n! (N − n)!
|0, 0⟩c,d

=

(
a† + b†e−iθ

)n (−a†eiθ + b†
)N−n√

2Nn! (N − n)!
|0, 0⟩a,b .

(5)

As shown in the supplemental material (SM), which in-
cludes the Refs. [30–35], the states |ψN

n ⟩ constitute a com-
plete basis satisfying H

∣∣ψN
n

〉
|g⟩ = g

√
2n

∣∣ψN−1
n−1

〉
|e⟩. This

describes the excitation of the atom accompanied by a transi-
tion from state |ψN

n ⟩ to |ψN−1
n−1 ⟩, as illustrated in Fig. 1 (b),

analog to the N -excitation Dicke basis for multi-atom sys-
tems [10, 36]. In analogy to the “cooperation number” for
Dicke states, the

√
2n factor represents the cooperativity of

the absorption, where the
√
2 appears due to the two modes.

Of particular interest is the case n = 0 for which
E(+)(r, t)|ψN

0 ⟩ = 0. The n = 0 state is therefore unable
to excite the sensor atom, for any N , and this is why we name
it the perfectly dark state (PDS) for the subspace ofN photons
[10, 17]

∣∣ψN
0 (θ)

〉
=

√
N !

2N

N∑
m=0

(−1)meimθ√
m! (N −m)!

|m,N −m⟩a,b .

(6)
In atomic system it was coined subradiant by Dicke since
H|ψN

0 ⟩|g⟩ = 0. Oppositely, the n = N state [10, 17]∣∣∣ψN
N (θ)

〉
= e−iNθ

√
N !

2N

N∑
m=0

eimθ√
m! (N −m)!

|m,N −m⟩a,b

(7)
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comes with a transition rate g
√
2N , which is

√
2 times that

of the single-mode result: HJC |g⟩|N⟩ = g
√
N |e⟩|N − 1⟩,

with HJC denoting the standard Jaynes-Cummings Hamil-
tonian [37]. State (7) is the analogue of the symmetric su-
perradiant mode, studied by Dicke in the atomic decay cas-
cade [36, 38], and represents the most superradiant of the
states with N photons [10]. We here refer to this state as a
maximally superradiant state (MSS) or bright state. Finally,
states within the range 0 < n < N have intermediate transi-
tion rates. In contrast to the two-level-atom case, the present
Hilbert space is unbounded, even for a finite number of field
modes, since each one can support an arbitrary number of pho-
tons [10] (see Fig.1(b)).

As we have just seen, dark states are eigenstates of the op-
erator E(+)(r, t) with null eigenvalue, which implies that they
are undetectable by usual sensors such as those described by
two-level atoms. On the other hand, the bright states couple
stronger than in the single-mode case. Thus, a natural ques-
tion arises concerning the connection between the quantum
mechanical dark (bright) states and the classical effects of de-
structive (constructive) interference between radiation fields,
as in regions of destructive interference, no light is detected,
while in regions of constructive interference, light scattering
is enhanced. To address this question we consider, without
loss of generality, the case of two modes with θ = 0. Then,
one can easily show that in-phase coherent states decompose
exclusively on the MSS subspace:

|α, α⟩ = e−|α|2
∞∑

N=0

√
2N

N !
αN |ψN

N ⟩. (8)

This implies an enhanced absorption by a factor of 2
(H|α, α⟩|g⟩ = 2αg|α, α⟩|e⟩) as compared to a single coher-
ent state (H|α⟩|g⟩ = gα|α⟩|e⟩). The two-mode MSS quan-
tum state, therefore, corresponds to the constructive interfer-
ence of classical in-phase fields.

On the other hand, two coherent fields with opposite phases
decompose in terms of PDSs only:

|α,−α⟩ = e−|α|2
∞∑

N=0

√
2N

N !
αN |ψN

0 ⟩. (9)

This state gives a suppressed interaction H|α,−α⟩|g⟩ = 0,
which can be interpreted either as belonging to the PDS sub-
space or, classically, as a destructive interference for two fields
with the same amplitude but opposite phases. However, not
every destructively interfering field is undetectable. This can
be seen by considering two modes in the state

|Υ⟩ = (|0⟩a + |1⟩a) (|0⟩b − |1⟩b) /2. (10)

In each of the modes, we have a non-zero average elec-
tric field, but as they are out of phase with each other, the
average resulting electric field is zero. According to the
classical interpretation of interference, such a field would
be undetectable but, according to Glauber’s theory [39],

it is detectable, in the sense that it will induce a non-
trivial dynamics for the sensor/atom. This can be easily ex-
plained using the description in terms of bright and dark
states, since such state can be written in the form |Υ⟩ =[
|ψ0

0⟩ −
√
2|ψ1

0⟩+
(
|ψ2

0⟩ − |ψ2
2⟩
)
/
√
2
]
/2, which shows a

projection onto the detectable subspace of bright states.
A key phenomenon for evidencing the wave nature of light

comes from Young’s double-slit experiment. The fundamen-
tal result is that both classical and single-photon coherent
sources produce the same fringe pattern, despite the very
different nature of these fields [25, 40–42]. To revisit this
experiment using the collective basis, one can consider two
equally weighted light modes emerging from two slits and in
the far-field limit. Without loss of generality, we assume both
waves with wave vectors k1 (mode a) and k2 (mode b), with
|k1| = |k2| = k. Then, k1 · r1 and k2 · r2, with ri the vector
connecting the ith slit with the sensor position, are the phases
acquired by the respective fields when propagating from slits
1 and 2, respectively, to the detection point (see Fig. 1).

For a single photon impinging on a double slit, the field in
the plane of interest and the detection process can be described
by replacing the two slits with two source atoms, the first at
the position d1 and the second at the position d2 (the positions
of the slits) [30]. Apart from a normalization factor which
depends on the radiation pattern of the two ‘slit’ atoms, g(k),
the field is given by the state (see SM for details) [30, 43]

|S⟩ = 1√
2

(
e−ik1·d1 |1, 0⟩a,b + e−ik2·d2 |0, 1⟩a,b

) ⊗
k̸=k1,k2

|0k⟩.

(11)
In previous works [30, 43], all the discussions on the in-

terference pattern are restricted to the probability of detect-
ing light at position r, which is given by the first-order inten-
sity correlation function G(1)(r, r, 0) = ⟨ψ|E(−)E(+)|ψ⟩ =∣∣⟨0|E(+)|ψ⟩

∣∣2, with E(+) ∝ aeik1·r + beik2·r ∝ a + beiθ,
and θ = (k2 − k1) · r, without engaging in any discussion
regarding the physical meaning of the collective states at the
detector’s position—specifically, without addressing the ex-
istence of states that couple to the detectors and others that
do not, as is done here. As described above, for this col-
lective measurement operator the dark and bright states are
|ψ1

0(θ)⟩ =
(
|1, 0⟩a,b − e−iθ|0, 1⟩a,b

)
/
√
2 and |ψ1

1(θ)⟩ =(
|1, 0⟩a,b + e−iθ|0, 1⟩a,b

)
/
√
2, respectively (apart from the

other vacuum modes of the electromagnetic field). With such
equations, we can rewrite Eq. (11), up to a global phase factor
as

|S′⟩ = cos (δϕ/2) |ψ1
1(θ)⟩ − isin (δϕ/2) |ψ1

0(θ)⟩, (12)

where δϕ = −(k2 · d2 − k1 · d1) + θ = k2 · r2 − k1 · r1, i.e.,
δϕ represents the phase difference of the two light paths from
the slits to the sensor atom. Clearly, at any detector position
(δϕ) we may have a bright, a dark, or a superposition of bright
and dark states, which implies that the photon can be at any
position. In other words, apart from the g(k) distribution, the
average number of photons as a function of δϕ is constant, i.e.,
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⟨a†a + b†b⟩(δϕ) = 1. However, the sensor atom can detect
the photon only at positions where the bright state survives.

Our finding is consistent with the controversially dis-
cussed [44, 45], but experimentally confirmed [46], observa-
tion that the interference pattern, which is the momentum dis-
tribution in the far field of the double slit, can be changed by
means of a which-path detector that is subtle enough not to
impart momentum kicks on the photon. Since, in our descrip-
tion, the photon can, in principle, arrive at any position on the
screen, washing out the interference fringes does not require
the which-path detector to steer the photon from a bright into
a dark region of the interference pattern. Instead, it is suf-
ficient for the detector to destroy the purity of the dark state.
This makes the photon detectable in the otherwise dark region.
The results reported here are therefore further confirmation of
the view that quantum-mechanical complementarity is based
on the abstract concept of entanglement instead of the intu-
itive notion of random momentum kicks induced by which-
path detectors [44].

On the other hand, when a coherent state is sent to a double
slit, part of the light goes through slit 1 at position d1, and
part of it goes through slit 2 at position d2. In this case, we
do not have a superposition state, but rather a product state of
the two modes k1 and k2 in coherent states with amplitude α
(assumed the same for both slits) and a relative phase which
depends on the position of the slit, i.e.

|e−ik1·d1α, e−ik2·d2α⟩a,b = e−|α|2
∞∑

N=0

CN |χN (δϕ)⟩, (13)

with CN =
√

2N/N !(e−ik2d2α)N and the phase-dependent
state

∣∣χN (δϕ)
〉
=

√
N !

2N

N∑
m=0

e−imδϕeimθ√
m! (N −m)!

|m,N −m⟩ ,

(14)
with δϕ defined right after Eq. (12). Such state cor-
responds to a MSS when the two modes are in phase,∣∣χN (2lπ)

〉
= eiNθ|ψN

N (θ)⟩, and to a PDS when in op-
posite phases,

∣∣χN ((2l + 1)π)
〉

= |ψN
0 (θ)⟩, with l =

0,±1,±2, ... . In this case, the average number of photons
is again independent of the phase difference, i.e.,

⟨a†a+ b†b⟩(δϕ) = 2|α|2, (15)

meaning that photons are present at every point on the screen,
contrary to the standard classical description of interference,
which states that no light arrives at points of destructive inter-
ference. The single-photon state |S⟩, which decomposes as a
sum of PDSs or MSSs only (see Eq. (12)), has the same fea-
ture, as discussed above. Therefore, the decomposition either
in only PDSs or only MSSs explains why single-photon fields
and classical fields exhibit the same fringe pattern.

The case discussed highlights a general result: as shown
in the SM, states of light composed solely of PDSs or MSSs
produce the same interference patterns as those from linear

(classical) optics or coherent states. However, this does not
hold for general collective states |ψN

n (θ)⟩ (Eq. 5) or superpo-
sitions containing both dark and bright states. This distinction
can help differentiate quantum from classical states of light
without relying on field-field correlations [30, 31]. For ex-
ample, consider a Mach-Zehnder interferometer (MZI) with
an input state |ψ2

1⟩ = (|0, 2⟩a, b − |2, 0⟩a, b)/
√
2, generated

by sending two photons into a 50/50 beam splitter [47]. In
this setup, the two output ports of the MZI contain the same
average photon number, independent of the phase φ, with
⟨na⟩ = ⟨nb⟩ = 1. This eliminates interference fringes, reduc-
ing visibility to zero, unlike classical fields, where intensity
in one output port can vanish depending on φ. This reduced
visibility in the quantum case reflects the quantum nature of
the field.

In light of our findings, we emphasize that the single-mode
case has a unique PDS, namely the vacuum state |0⟩. It may
sound trivial since there is no photon to excite the detector,
yet its interest lies in its uniqueness: any other state excites
the sensor atom. Thus, our interpretation in terms of dark and
bright states provides a new way to explain why single-mode
Fock states |N⟩ with N > 1 do excite the sensor atom, even
for zero mean electric fields. The multi-mode case, however,
is fundamentally different since it possesses an infinite fam-
ily of dark states with an arbitrarily large number of photons,
which do not couple to the sensor atom in the ground state. In
addition, the two-mode case also predicts bright and interme-
diate states, the latter having no correspondence in classical
physics. The above discussion, originally for two radiation
field modes, extends directly to M modes/slits [48, 49] (see
SM), where any interference is described via collective bright,
dark, and intermediate states. A pulsed light from mode-
locked lasers exemplifies this, with photons forming bright
states during pulses and dark states between them [50].

From an experimental perspective, the two-mode light-
matter interaction discussed here suggests an implementa-
tion in optical cavities coupled to a two-level atom [51, 52],
trapped ions where a single emitter can be coupled to its two
vibrational modes [53, 54] as performed in [55], or supercon-
ducting circuits [56]. We visualize many possibilities, draw-
ing inspiration from the diverse applications that appear in the
context of super- and subradiance in atomic systems. For ex-
ample, one could employ photonic superradiant states to fur-
ther enhance light emission in high-brightness light sources.
On the other hand, as the dark states do not interact with mat-
ter, they could, in principle, be employed as decoherence-free
photonic quantum memories. Finally, by taking advantage
of the fact that collective bright (dark) states do (not) inter-
act with atoms, one could use such states to imprint a condi-
tional phase on an atomic system, thus implementing single-
shot logic operations in crossed-cavity setups [52], allowing
for universal quantum computing with traveling modes [57].

In conclusion, we have discussed how a description of
multi-mode light in terms of maximally superradiant or per-
fectly dark collective states offers a natural interpretation for
constructive and destructive interference. Remarkably, this
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Dicke-like bosonic basis applies to classical and non-classical
states of light, thus going beyond the simple classical ap-
proach of average fields. We have shown that, from a quantum
perspective, interference is intimately related to the coupling
of light and matter which differs for the bright and dark states.
This is completely different from the classical description,
where no assumption on the matter is necessary to describe
the sum of electromagnetic fields. One can interpret this as
a manifestation of the quantum-measurement process where
the expectation value of an observable depends on the measur-
ing apparatus [58, 59]. Within this framework, we have inter-
preted the double-slit experiment and the interference of light
waves in general in terms of bright and dark states, i.e., using
only the corpuscular description of the light and the quantum-
mechanical superposition principle.
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Lett. 86, 4516 (2001).
[17] G. Bjork, J. Soderholm, A. Trifonov, P. A. Usachev, L. Sánchez-

Soto, and A. Klimov, in ICONO 2001: Quantum and Atomic
Optics, High-Precision Measurements in Optics, and Optical
Information Processing, Transmission, and Storage, Vol. 4750
(SPIE, 2002) pp. 1–12.

[18] C. C. Gerry, J. Albert, and A. Benmoussa, Journal of Physics
A: Mathematical and General 38, 1333 (2005).
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Review A 65, 033818 (2002).
[25] B. J. Luo, L. Francis, V. Rodrı́guez-Fajardo, E. J. Galvez, and

F. Khoshnoud, American Journal of Physics 92, 308 (2024).
[26] O. Steuernagel, Phys. Rev. A 65, 013809 (2001).
[27] R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[28] R. J. Glauber, Quantum theory of optical coherence: selected

papers and lectures (John Wiley & Sons, 2007).
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