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Life’s  elusive  essence  may  lie  in  information.  This  narrative  review  argues  that  living  systems  are

fundamentally  computational  or  information-processing phenomena,  in  a  specific sense:  not  merely  by

metaphor  or  analogy,  but  through  concrete  mechanistic  processes  that  manipulate  and  preserve

information.  We  survey  advances  from  2022–2025  across  bioenergetics,  systems  biology,  algorithmic

information theory, and origin-of-life research to substantiate this thesis. Living organisms harness energy

to stave off entropy and sustain self-organization , using hierarchical architectures of error-correcting,

adaptive feedback loops to process information at multiple levels .  We examine key evolutionary

transitions—particularly eukaryogenesis—as critical inflection points where life’s “information architecture”

was  radically  restructured,  enabling  leaps  in  complexity .  Formal  frameworks  like  algorithmic

information theory (AIT), assembly theory, and constructor theory provide quantitative tools to define life in

terms of information and computation, yielding testable hypotheses about life’s origins and universal traits.

Distinguishing  clearly  between  metaphorical  invocations  of  computation  and  life’s  literal  information-

processing capacities, we propose a unified view: life is best understood as an emergent computational

system—one  that  arose  within  the  laws  of  physics  yet  exhibits  novel,  higher-level  rules  due  to  the

processing and preservation of information. We conclude by highlighting open questions at the frontiers of

this interdisciplinary synthesis and outlining how future research can further unravel  life’s  fundamental

mystery.

Introduction

What is “life”? This age-old question has gained new urgency in an era of synthetic biology and astrobiology,

yet it remains notoriously difficult. Classical definitions—metabolism, reproduction, evolution, homeostasis

—capture facets of life but fall short of a singular essence. A growing chorus of research suggests that

information may  be  the  key:  living  systems uniquely  acquire,  store,  transmit,  and use  information  to

maintain their organization and function . In other words, life  processes information.  This perspective

casts life as fundamentally computational, provoking both excitement and controversy. Is the cell literally a

computer or is this merely a useful analogy? What distinguishes the computation occurring in living cells

from the operations of a laptop or a Turing machine? Here we confront these questions directly, clarifying

the senses in which life can be viewed as a computational system and where the analogy breaks down.

To ground the discussion, consider Schrödinger’s 1944 insight that living organisms  avoid the impending

chaos  dictated  by  the  Second  Law  of  Thermodynamics  by  feeding  on  “negative  entropy” .  Modern

biology  reframes  this:  life  uses  a  continuous  flux  of  energy  to  create  and  preserve  information-rich

structures that resist entropy . A bacterium, for example, must consume nutrients (energy) to repair

DNA damage, fold proteins, and maintain gradients—all processes that uphold an internal order encoded in

molecular  information.  Life’s  distinguishing  feature  appears  to  be  this  dynamic  of  information

maintenance in the face of  noise and decay,  something no non-living system achieves to  the same

extent. This review explores the hypothesis that life is, at root, an information-processing system sustained by

energy flow, and that this paradigm can unite perspectives from biochemistry to evolution and even physics.
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We proceed as follows. First, we distinguish metaphorical, analogical, and mechanistic interpretations of

“life  as  computation”  to  ensure  conceptual  clarity.  Next,  we  examine  how  living  systems  implement

information processing in practice: the bioenergetics that power it, the autopoietic self-maintenance that

defines living organization, and the multi-layered error correction and signaling networks that give life its

remarkable robustness . We then delve into evolution’s major transitions through an informational

lens.  The  origin  of  the  eukaryotic  cell  (eukaryogenesis)  receives  special  attention  as  an  “algorithmic

upgrade” in life’s history , enabling complexity that prokaryotes could never attain. We discuss how this

transition – and others like multicellularity – reconfigured the “computational architecture” of life. 

Building on these empirical insights, we survey formal theoretical frameworks that attempt to quantify and

define  life’s  informational  complexity.  Algorithmic  information  theory  (AIT) provides  measures  of

complexity beyond Shannon entropy, promising to capture the algorithmic content of biological structures

.  Assembly  theory,  introduced  in  2021–2023,  offers  a  complementary  measure  of  complexity  by

considering  an  object’s  minimal  generative  steps  and  has  already  been  applied  to  identify  molecular

signatures of life . Meanwhile, constructor theory (a recent formulation in fundamental physics) posits

that life’s unique capacities (like self-reproduction and open-ended evolution) are permitted by physical laws

only if those laws allow information to be instantiated in a transferable, digital form . These frameworks

not only elucidate what life is, but also yield testable criteria—for instance, using assembly index to detect

biosignatures  on  other  planets,  or  using  AIT  to  pinpoint  when  chemical  systems  cross  into  “life-like”

complexity.

Throughout, we emphasize empirical grounding. Wherever possible, statements about life’s computational

nature are linked to specific mechanisms (e.g. DNA replication as a coded information process, or gene

regulatory networks performing computational logic). We draw on a broad literature, highlighting recent

discoveries  (2022–2025)  that  push  the  frontier:  from  quantifying  the  thermodynamic  cost  of  cellular

information processing  to mapping how genome size and organization reflect algorithmic constraints

.  We  also  address  criticisms—such  as  concerns  that  viewing  life  as  computation  might  be  “just  a

metaphor”—by  demonstrating  the  rigorous  content  of  this  view.  Finally,  in  a  concluding  section,  we

confront open questions and outline future directions. By integrating diverse perspectives into a coherent

narrative,  we  aim  to  provide  a  PhD-level  synthesis  suitable  for  a  top-tier  interdisciplinary  journal,

illuminating how life can indeed be understood as a computational system in a deep, non-reductive sense.

Life and Computation: Metaphor, Analogy, or Mechanism?

It is easy to call DNA a “digital code” or the brain a “biological computer,” but such phrases can mean very

different things.  Before asserting that life is  computational,  it  is  crucial  to delineate  in what sense we

intend the claim. In scientific discourse, “computation” applied to life has been used (1) metaphorically, (2)

analogically, and (3) mechanistically. Table 1 summarizes these distinctions with examples:

Sense of “Life as

Computation”
Meaning and Usage Biological Example

Metaphorical

Invokes computation as a

poetic descriptor; not

meant literally.

Saying “DNA is software” or calling evolution

“nature’s programmer” – vivid, but not a literal claim.
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Sense of “Life as

Computation”
Meaning and Usage Biological Example

Analogical

Draws explicit comparisons

between biological

processes and human-

designed computations, to

gain insight.

Comparing genetic regulatory networks to electrical

circuits or viewing neural firing patterns as codes.

Classic cybernetics likened organisms to control

systems with feedback .

Mechanistic

Posits that living systems

physically instantiate

information-processing

functions in a rigorous

sense.

DNA transcription/translation as a real encoding/

decoding process; cellular signaling pathways

performing decision-making logic (e.g. toggling

gene expression like a switch). The genome’s error-

correcting features resemble those in engineered

communication channels .

In this review, our focus is on the analogical and mechanistic levels. The metaphor “life is computation” is

widespread, but unless grounded in mechanistic detail it risks being trivial. Instead, we examine how far the

analogy can be pushed and where it  becomes literal.  For  instance,  the  genetic  code is  often cited as

evidence that life encodes information digitally much like a computer. Indeed, sequences of DNA bases (A, T,

G, C) can be seen as quaternary “bits” that get translated via the ribosome into proteins. This is more than

metaphor: it is a  codified mapping akin to a lookup table, complete with redundancy and error-detection

capabilities . Researchers in coding theory have pointed out that the DNA code has a built-in robustness;

as one study notes, “the sequence of bases in DNA may be considered as digital codes which transmit

genetic information,” with the code’s structure optimized for error resistance . Here the computational

analogy shades into mechanism—DNA truly  behaves like a stored data tape read by cellular  machines

(polymerases  and  ribosomes)  that  perform  discrete  operations  (copying,  editing,  and  executing

instructions).

At the same time, cells are not silicon computers. No centralized CPU directs cellular operations; there is

no binary instruction set separate from the chemistry. Instead, computation in life is  embedded: it arises

from  the  self-organizing  interactions  of  molecules.  In  this  sense,  life’s  computation  is  analog and

distributed. A single E. coli cell, for example, can “compute” optimal gene expression responses to nutrients

or stress, but this happens via networks of biochemical reactions that correspond to logic circuits only in a

loose sense. One influential analogy is to view metabolism and gene regulation as a network of information

flow:  signals  (inputs)  alter  gene  activity  (processors),  which  produce  metabolic  changes  (outputs)  that

feedback  to  inputs .  This  perspective  was  advanced  by  cybernetics  and  systems  biology,  which

regard organisms as engaged in continual information processing to maintain homeostasis. Such analogies

have real predictive power (e.g., using control theory to model insulin regulation or ecological population

dynamics), yet we must be cautious not to force-fit every aspect of life into computer metaphors.

Mechanistic  computation in  life appears  most  clearly  when looking at  error  correction and adaptive

feedback. Consider DNA replication: the DNA polymerase enzyme not only copies the genetic information

but  also  proofreads,  pausing  to  excise  mispaired  bases.  This  is  an  algorithmic  if-then  check  akin  to  a

computational  error-correcting routine.  Without  it,  genetic  information would degrade irreversibly  over

generations. In the 1990s, information theorist Bernard Battail pointed out that heredity faces the same

problem as any noisy communication channel: without error correction, signals (genes) would accumulate

errors and eventually  become gibberish .  He argued this had been underappreciated in biology .
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Empirical evidence now shows multiple layers of genomic error-handling. For example, ancient, essential

gene  families  (like  HOX  developmental  genes)  are  found  to  be  exceptionally  well-conserved  over

evolutionary time, far more than expected by normal mutation rates. One hypothesis is that a  “nested”

error-correcting code is at work – perhaps DNA sequences and chromosomal architectures arranged in

ways that preserve crucial information through a kind of redundancy or checksum mechanism . As a

peer-reviewed  study  argues,  the  high  conservation  of  HOX  gene  regions  “cannot  be  explained  unless

assuming that a genomic error-correcting code resulting from a stepwise encoding exists” . This idea

remains theoretical, but it underscores that life’s informational continuity over billions of years likely relies

on error correction principles familiar from computing (albeit implemented in biochemical fashion).

In summary, calling life a computational system is not to say organisms run on binary code or that a cell is a

little laptop. Rather, it  means that  information processing is a fundamental,  causal factor in living systems.

Living systems instantiate physical processes that can be mapped to informational operations: they encode

data (in genes, proteins, signals), perform logical operations (feedback loops, regulatory “decisions”), and

even  implement  error-correcting  codes.  These  are  mechanistic  realities,  even  if  they  do  not  involve

electronic  transistors.  Throughout  this  review,  when  we  speak  of  life’s  “computations”  or  “information

processing,” we refer to this concrete, mechanistic sense, while using analogies to standard computing only

as  guiding metaphors.  With  this  understanding,  we turn to  how life’s  computational  nature manifests,

starting with the energetic and organizational foundations that make such information processing possible.

Bioenergetics and Informational Complexity

Living  systems  are  consummate  energy  transducers.  They  must  be,  in  order  to  create  and  maintain

improbable  states  of  order  (low  entropy)  rich  in  information.  Schrödinger’s  insight  that  life  feeds  on

negative  entropy  has  evolved  into  a  modern  science  of  biological  energetics:  how organisms  extract

usable work from their environment and dissipate entropy back out, all while preserving internal structure.

Crucially, this energetic expenditure is tied to information processing. It takes work to copy DNA, to correct

errors, to power molecular motors that shuttle signals. In this section, we explore the intimate link between

energy and information in living systems, and how constraints in energy availability can impose limits on

biological complexity.

Claude Shannon’s information theory famously established that  information is physical:  to send, copy, or

erase a bit of information requires physical resources (energy, channel capacity, etc.). Landauer’s principle

quantifies  this,  showing a  minimum energy  cost  for  erasing  a  bit  at  a  given  temperature.  Living  cells

operate  in  regimes  where  these  costs  are  non-negligible.  For  example,  the  proofreading step  in  DNA

replication consumes extra ATP energy; the benefit is reduced error rates (information fidelity). Organisms

have  evolved  remarkably  efficient  ways  to  approach  these  physical  limits.  Recent  work  in  stochastic

thermodynamics has  begun to  analyze  biological  processes  in  this  light,  treating cells  as  information

engines. A 2025 review by Cao & Liang surveys how nonequilibrium thermodynamics can elucidate the

fundamental  limits  of  biological  functions,  emphasizing  examples  like  molecular  machines  and  error

correction mechanisms in biology . By applying these principles, researchers are quantifying trade-offs

such as the energy cost of maintaining a high-fidelity genome or of sensing the environment accurately.

One outcome of this approach is the realization that biological networks often operate near optimal points

balancing energy expenditure and information gain – essentially, organisms spend just enough energy to

gather and use information that improves their survival,  but not much more, reflecting an evolutionary

tuning.
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The “Power” Behind Complexity: Mitochondria and Eukaryotic Innovation

A striking illustration of how energy availability ties to informational complexity is seen in the evolution of

eukaryotes. All complex multicellular life (plants, animals, fungi) descends from a singular ancestral event:

the merger of two simpler cells (an archaeal host and a bacterial endosymbiont) to form the first eukaryotic

cell.  This  endosymbiosis  gave  rise  to  mitochondria  –  the  cell’s  power  plants  –  and  coincided  with  an

explosion  in  genome  size  and  regulatory  complexity.  Why?  One  long-standing  hypothesis  is  that

mitochondria provided a huge boost in energy per gene, lifting a previous bioenergetic constraint that had

capped prokaryotic complexity . Nick Lane and colleagues argued that a typical eukaryotic cell enjoys

orders  of  magnitude  more  energy  per  gene than  a  bacterium,  because  the  mitochondria’s  internal

membranes  massively  expand the  energy-generating surface  area  relative  to  volume .  In  Lane’s

view, this “extreme genomic asymmetry” – tiny bioenergetic genomes inside mitochondria supporting a

large nuclear genome – allowed eukaryotes to afford many more genes (including lots of non-coding DNA)

and to express them at far higher levels . In principle, this freed eukaryotic lineages to explore vastly

larger combinatorial spaces of gene regulation and cell specialization, paving the way for innovations like

multicellularity and complex developmental programs .

Interestingly, this bioenergetic theory has not gone unchallenged. Comparative cellular physiology by Lynch

and  Marinov  (2015–2017)  suggested  that  on  a  per-cell-volume  basis,  eukaryotes  do  not  produce

significantly more energy than bacteria . In their data, mitochondria did not greatly enhance total ATP

per unit volume, calling into question the magnitude of the energy advantage. Lane and others countered

that energy per gene (rather than per volume) is the relevant metric, since eukaryotes concentrate power

in mitochondria while outsourcing most genetic functions to the nucleus . The debate continues, but a

synthesis  is  emerging:  the  key  may not  be  raw energy  output,  but  how energy  is  organized and

coupled  to  information.  In  eukaryotes,  having  separate  compartments  (nucleus  vs.  mitochondria)

fundamentally changed how genomes are regulated and protected. The mitochondrial genome shed most

of  its  genes to  the nucleus,  enabling streamlined energy production,  while  the nucleus  expanded and

evolved rich internal regulation (splicing, chromatin, etc.) . In essence, eukaryotes reorganized the

flow of energy and information: mitochondria handle most ATP generation but under tight nuclear control,

and  the  nucleus,  relieved  from  energy-production  duty,  could  evolve  new  layers  of  gene  regulation

complexity.  This  is  a  prime  example  of  energy–information  coupling in  evolution:  a  new  energy

mechanism  (endosymbiosis)  didn’t  just  “add  power”  like  a  bigger  engine,  it  transformed  the  cell’s

computational architecture.

One concrete consequence of this transformation is the advent of  a dedicated information-processing

organelle – the nucleus – separated from the bioenergetic organelles. This has an analogy in computer

architecture:  by  separating  “memory  storage”  (nucleus  housing  DNA)  from  “power  supply  and

processing” (mitochondria fueling metabolism), the eukaryotic cell achieved a scalable architecture .

Prokaryotes, in contrast, have everything in one compartment, which imposes trade-offs: DNA is located in

the cytoplasm where metabolism occurs, so genome expansion slows processes or becomes energetically

costly.  Eukaryotes solved this by putting DNA in a vault  (nucleus) and managing metabolic reactions in

mitochondria  and  cytosol,  with  regulated  exchange  between  them.  This  compartmentalization  is  what

allowed  eukaryotic  genomes  to  expand  massively  (billions  of  base  pairs,  with  introns  and  regulatory

elements) without proportionally crippling the cell’s efficiency . The presence of introns (non-coding

segments  spliced  out  of  mRNAs)  is  particularly  noteworthy:  introns  are  an  energy  cost  (the  cell  must

transcribe extra DNA and then splice it out), but they enable modular information processing – exons can

be  shuffled  or  alternative-spliced  to  create  multiple  proteins  from  one  gene,  and  splicing  provides  a
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regulatory  checkpoint.  This  looks  like  inefficient  redundancy  until  one  appreciates  it  as  an  algorithmic

innovation with long-term payoffs in evolvability.

Thus,  eukaryogenesis  highlights  how  increasing  energy  availability  can  synergize  with  information

architecture to unlock new levels of complexity. It’s not simply “more energy = more complexity,” but rather

that  energy must be harnessed in an informationally structured way. Mitochondria were only transformative

because their integration rearranged the cell’s information flow (gene–metabolism coupling) . This

theme recurs throughout life’s history: major increases in complexity often coincide with innovations in how

energy is utilized to process information. We will revisit eukaryogenesis in more detail later as a case study

of a key transition. First, we examine the general principles of how living systems self-organize and manage

information, which sets the stage for understanding those evolutionary leaps.

Information and Autopoiesis: The Self-Maintaining Computational

Network

A living cell is not a passive collection of molecules; it is an active, self-maintaining network of chemical

reactions. Maturana and Varela coined the term autopoiesis (from Greek “auto” = self, “poiesis” = creation)

to  describe  this  property:  an  autopoietic  system  continuously  regenerates  and  maintains  its  own

components and boundaries, separating itself from the environment while exchanging matter and energy

to sustain order. In simpler terms, life is a self-producing system. This concept, introduced in the 1970s, was

an attempt to capture the organizational closure of living cells – the way every part of the cell is produced

by interactions of other parts, forming a holistic, self-perpetuating network.

Today, autopoiesis is recognized as a key feature that any definition of life must reckon with. But how does

it  relate to information and computation? Biophysicist  Howard Pattee and others have argued that the

secret of life’s autonomy lies in a duality: living systems carry a semantically rich information structure

(e.g., DNA, or more abstractly, the “knowledge” of how to build and sustain the organism) and a dynamic

machinery that executes processes according to that information. Autopoiesis marries these two: the cell’s

machinery (enzymes, membranes, etc.) is continually rebuilding itself according to instructions and signals

(information) that are themselves maintained by that machinery. It’s a bootstrap: hardware and software co-

evolving. One researcher, William Hall, emphasized that “autopoiesis and the construction of knowledge are

inseparable aspects of physical phenomena scalable to many levels of organization” . In other words, at

the core of an autopoietic system’s self-production is an informational loop—what the cell “knows” (in terms

of structure and state) directly contributes to what it does, and vice versa, across scales from molecular to

ecological .
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Figure 1:  A dividing cell  (human HeLa cells  in anaphase,  with DNA in blue and structural filaments in green)

exemplifies autopoiesis – the self-produced, self-maintained nature of life. Each daughter cell inherits a copy of the

genetic information (blue) and a share of the cellular machinery, allowing the autopoietic process to continue.

Information (genes) guides the assembly of structure (proteins, membranes, shown in green and orange), which in

turn ensures the faithful copying and segregation of that information.

Autopoiesis highlights an important point often lost in the computational metaphor: computation in living

systems is not about abstract symbol manipulation divorced from material reality; it is intrinsically

bound  up  with  constructing  and  preserving  a  physical  entity. A  cell  computes  itself  into  existence

moment  by  moment.  This  sets  life’s  computation  apart  from,  say,  a  computer  program computing  an

answer and then terminating; a cell’s “output” is ultimately its own continued survival and reproduction. The

concept  of  autopoiesis  has  been  scaled  up  to  explain  larger  systems  (organisms,  ecosystems,  even

societies)  and  links  to  ideas  in  cognitive  science  (e.g.  enactive  cognition  suggests  that  an  organism’s

perception and actions form a self-sustaining loop of information). For our purposes, the takeaway is that

any computational view of life must account for this circular, self-referential information processing. The

“program” and the “machine” in biology are deeply intertwined.

Seen through the autopoietic lens, many classical hallmarks of life – metabolism, homeostasis, adaptation –

are  manifestations  of  a  system  maintaining  its  own  integrity  by  informational  feedback.  For  example,

homeostasis (keeping internal conditions within bounds) can be seen as a real-time computation where

sensors detect deviations and effectors correct them, implementing a control algorithm. On the molecular

level, consider the heat-shock response: when proteins start to misfold at high temperature, cells produce

chaperone proteins that help refold or degrade the misfolded proteins. This is a feedback control system:

the cell “senses” the informational state of its proteome (via proteins that detect misfolded shapes) and

triggers  a  compensatory  program  encoded  in  DNA  (the  heat  shock  genes).  It’s  as  if  the  cell  runs  a

subroutine to restore order – a clear example of a built-in algorithm honed by evolution to ensure the

autopoietic network doesn’t fall apart under stress.



Autopoiesis also dovetails with the idea of emergence in complex systems. A living cell exhibits properties

(like reproduction or purposeful behavior) that none of its constituent molecules have in isolation. These

emergent properties arise from the network of interactions. As one textbook example puts it: “Life is an

emergent property; none of the component molecules of a cell are alive, only a whole cell lives”. Emergence

is essentially collective computation: numerous components interacting generate higher-level order. We see

layered emergent phenomena across biology’s hierarchy: molecules form organelles, organelles form cells,

cells  form  tissues,  and  so  on,  each  level  bringing  new  information  processing  capabilities  (neurons

collectively produce consciousness, colonies of insects collectively make decisions, etc.). Crucially, each level

also introduces constraints and error-correcting features that stabilize the emergent order. The genome’s

stability  is  maintained by molecular  repair  systems;  a  tissue’s  stability  might  be maintained by cell-cell

signaling  that  regulates  growth  (avoiding  runaway  cancer,  for  instance).  This  perspective  aligns  with

autopoiesis by emphasizing how nested loops of information and causation make life robust yet adaptable. At

each  level,  new  “rules”  emerge  that  cannot  be  predicted  by  full  knowledge  of  the  lower  level ,

because the collective dynamics generate novel informational structures (like a neural network’s memory or

an immune system’s recognition repertoire). Life’s computational nature is thus inherently hierarchical and

multi-scale. We find information encoded in DNA sequences, in metabolic network states, in neural circuits,

in group behaviors, all at once – each level feeding into and constraining the others . This nesting is

reminiscent  of  modular  programming or  layered  architecture  in  computer  science,  but  achieved

organically through evolution.

In summary, autopoiesis provides a foundational view of life as a self-sustaining information processing

loop. It reminds us that the “computations” of life are always geared toward one overarching task: persisting

as an organized system. Unlike a man-made computer, which dutifully runs any algorithm we load into it, a

living system’s computations are inextricably self-referential – they are about maintaining the very machine

doing the computation. This principle will be important as we consider evolution next: evolution, in a sense,

is the long-term computation by which life explores possible self-maintaining configurations, with natural

selection  favoring  those  that  compute  themselves  most  successfully.  The  next  section  examines  how

evolutionary transitions can be viewed through changes in life’s information processing architecture.

Evolutionary Transitions as Information Upgrades

Life’s history on Earth can be viewed as a series of major transitions, each of which introduced a new way of

storing,  transmitting,  or  processing  information.  The  framework  of  “Major  Evolutionary  Transitions”,

originally  articulated  by  John  Maynard  Smith  and  Eörs  Szathmáry,  includes  events  like  the  origin  of

replicating molecules, the emergence of chromosomes (groups of genes), the advent of the genetic code,

the rise of eukaryotic cells, the development of sexual reproduction, multicellularity, and the emergence of

societies and language. Strikingly, every transition on that list corresponds to an innovation in information

handling: for example, chromosomes and sexual reproduction enabled more efficient genetic information

mixing;  multicellularity  created  new  channels  for  cellular  communication  and  specialization;  language

externalized information into  culture.  Here,  we will  focus  on a  few critical  transitions  to  illustrate  how

viewing  them  through  the  lens  of  computation  and  information  yields  new  insights.  In  particular,  we

highlight  eukaryogenesis (the origin of the eukaryotic cell) as a watershed event, and also touch on the

emergence of multicellular life and the origin of life itself, all as case studies in life’s evolving “information

architecture.”
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Breaking the Prokaryotic Ceiling: The Algorithmic Phase Transition of Eukaryogenesis

As introduced earlier, prokaryotes (bacteria and archaea) remained relatively simple for billions of years –

they  are  extraordinarily  successful  at  small  sizes,  but  even  the  most  complex  prokaryotes  (like

photosynthetic  cyanobacteria)  don’t  approach the structural  or  genomic  complexity  of  eukaryotes.  This

suggests  there  were  constraints  holding  back  complexity.  We’ve  discussed  the  bioenergetic  constraint

(surface-area-to-volume limits on energy production) and how the mitochondrial endosymbiosis alleviated

that.  However,  recent  research  has  illuminated  a  second,  subtler  constraint:  a  computational  (or

algorithmic) constraint on exploring genomic complexity. In 2025, Muro  et al. published an analysis of

protein and gene length distributions across ~33,000 genomes from all domains of life . They found

that throughout prokaryotic evolution, average protein-coding gene length slowly increased, following a

roughly  log-normal  distribution that  can be modeled by a  multiplicative  stochastic  process  (essentially,

random incremental changes) . However, when gene lengths reached a certain threshold (around

1500  nucleotides  on  average),  a  dramatic  change  occurred .  This  corresponds  to  the  time  of

eukaryogenesis,  roughly  1.5–2 billion years  ago.  Beyond this  point,  gene lengths,  protein  lengths,  and

genome sizes no longer followed the same trends – it was as if life’s “genetic algorithm” underwent a phase

shift.

Muro et al. characterized this as an “evolutionary algorithmic phase transition.” In the prokaryotic phase,

increasing gene length was “computationally simple”: as long as proteins were short, exploring sequence

space  by  random  mutation  and  selection  was  feasible .  But  as  genes  got  longer,  the  space  of

possible sequences grows exponentially, making it algorithmically infeasible for blind evolution to find new

functional  proteins  by  random  search .  They  postulate  that  by  the  time  average  genes  ~1500  bp,

prokaryotes  were  hitting  this  wall  –  a  combinatorial  explosion  of  possibilities  that  evolution  couldn’t

efficiently  navigate  with  existing  mechanisms.  The  solution,  which  arose  in  the  lineage  leading  to

eukaryotes,  was  the  incorporation  of  non-coding  sequences (introns)  and  the  advent  of  a  nucleus  with

splicing. In essence, eukaryotes introduced a new algorithm:  splicing and modular genes significantly

reduce the complexity of searching for new proteins . Instead of one continuous coding sequence

evolving stepwise, intron-exon structures allow shuffling and recombination of functional modules (exons)

and  alternative  splicing  gives  multiple  protein  outputs  from  one  gene.  This  “decoupling”  of  gene  and

protein length circumvented the previous linear constraint. As Bascompte (one of the authors) explained, in

early life “increasing the length of proteins and their corresponding genes was computationally simple” but

eventually “the search for longer proteins became unfeasible” – the tension was resolved “abruptly with the

incorporation of non-coding sequences… With this innovation, the algorithm for searching for new proteins

rapidly  reduced  its  computational  complexity” .  The  nucleus  and  spliceosome  made  the  process

nonlinear, breaking the algorithmic stalemate.

From this perspective, eukaryogenesis was an information-processing revolution as much as an energetic

one. The eukaryotic cell  represents a distinct phase of life where a new strategy for managing genetic

information unlocked further complexity. Supporting this, the study found signatures of critical phenomena

around that transition (like critical slowing down, which in physics indicates a system poised at a phase

change) . After eukaryotes emerged, the path was opened for other major transitions. Indeed, Muro

et  al. remark  that  once  eukaryotic  complexity  took  hold,  it  “unlocked  the  path  toward  other  major

transitions – such as multicellularity, sexuality, and sociability” . The eukaryotic genome, with its vastly

expanded non-coding regions and the capacity for regulatory innovation, provided the substrate for those

future evolutionary experiments.
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It is important to note that eukaryogenesis appears to have been a singular, extremely improbable event

– perhaps the hardest step in life’s history, as evidenced by its unique occurrence (all eukaryotes share a

common ancestor). Some astrobiologists even equate it with the Great Filter (a step so unlikely that it might

explain  the  Fermi  Paradox  of  why  we  haven’t  detected  other  complex  life) .  The  computational

perspective adds a layer to this: the improbability might lie in the necessity of a chance merger of two cells

that solved a deep algorithmic/energetic constraint in one stroke. The archaeal host provided a permissive

environment  for  genome  expansion  (with  budding  internal  membrane  systems  perhaps),  while  the

bacterial  symbiont not  only  gave energy but  forced the evolution of  a  nucleus and introns due to the

relocation of genes and the need to manage the combined cell . Such a perfect storm is unlikely to

repeat often. Once it did happen, however, natural selection could take over to refine and elaborate the new

computational architecture.

Multicellularity and Beyond: Hierarchical Information Integration

Following eukaryogenesis, another major transition was the rise of multicellular organisms. Multicellularity

evolved multiple times independently (in animals, plants, fungi, algae, etc.), suggesting it might be a more

accessible  innovation  given  the  eukaryotic  toolkit.  From  an  information  standpoint,  multicellularity

represents  a  shift  where  information  processing  is  distributed  across  a  collective  of  cells  rather  than

confined to one. Individual cells specialize and communicate; thus multicellular life required the invention

of  cell-cell  signaling  and  gene  regulatory  networks that  operate  on  a  tissue/organism-wide  scale.

Developmental biology is essentially the study of how one cell (the zygote) gives rise to an organized body

through a cascade of  information exchanges:  chemical  gradients,  signaling molecules,  gene expression

cascades – in effect, a computational process orchestrating millions of cells. The instructions for this process

are encoded in the genome but are executed through cell interactions. 

An illustrative concept is positional information, introduced by Lewis Wolpert: cells in a developing embryo

figure  out  their  position  (say,  along  the  head-to-tail  axis)  by  reading  concentrations  of  morphogen

molecules, and then execute genetic programs accordingly (e.g. “if morphogen A level is high and B is low,

become head tissue”). This is akin to a distributed computation where each cell performs a simple logical

function based on inputs,  but  the global  result  is  the formation of  a  complex pattern (the body plan).

Importantly,  multicellular  organisms  evolved  mechanisms  for  error  correction  and  robustness  in

development – for example, many embryos can regulate or compensate if some cells are removed or if

gene  dosage  changes,  adjusting  signaling  to  still  form  a  proper  body  plan.  Such  fault-tolerance is

reminiscent of robust computation systems that can handle errors. The Hox gene network (which patterns

body segments) is a classical example: it’s a highly conserved, hierarchically organized gene circuit that

ensures the right structures form in the right places. The conservation and redundancy in developmental

gene networks (backup genes, overlapping signals) indicate that evolution built in error-correcting and fail-

safe  features  to  these  multicellular  computations  –  embryos  that  could  “catch  mistakes”  in  the

developmental algorithm had a better chance to survive.

From a broader view, the transition to multicellularity created a new level of information hierarchy. Now

natural selection could act not only on genes and individual cells, but on networks of cells and emergent

traits (like organ function or behavior). The genome had to evolve new ways to encode not just proteins, but

programs for assembling diverse cell types into a coherent whole. One could say the genome’s role shifted

from just specifying a cell’s components to also specifying an algorithm for development. This is evident in

phenomena like regulatory DNA sequences that act as logic gates controlling gene expression in precise

spatial patterns. For instance, an enhancer sequence might integrate inputs from multiple transcription
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factors (each maybe indicating presence of a certain signal or cell lineage) and drive a gene’s expression

only if a particular combination of conditions is met – essentially implementing a Boolean logic rule (e.g.,

“gene on if A AND B are present, but not C”). Such logic ensures the gene is active only in a certain tissue.

These  are  hard-wired  computations  evolved  over  time,  and  we  can  even  manipulate  them  now  with

synthetic biology, treating them as programming elements.

Going one step further, consider the emergence of nervous systems in animals – another threshold in life’s

informational  complexity.  Neurons  are  cells  specialized  purely  for  rapid  information  processing  and

communication.  With  neurons  and  brains,  evolution  enabled  real-time  computational  modeling  of  the

environment. A predator can integrate sensory data, predict prey movements, and coordinate a chase; a

primate can remember fruit locations and plan social strategies. The brain’s evolution is beyond our scope

to discuss in detail, but it’s clearly an organ of computation, converting experiences (inputs) into behavior

(outputs) to enhance survival. It operates on electrical and chemical signals which obey the same principles

of information theory (signals must be above noise, error-correction in neural codes can be found, etc.). The

cost is  high – human brains consume ~20% of our basal  energy on just 2% of our body mass – again

underscoring the energy-information link. Natural selection has deemed that energy worthwhile for the

information advantage it provides.

Finally, the emergence of culture and technology in humans can be seen as life’s information processing

extending beyond biology into external media. With humans, genetic evolution built  a brain capable of

language, and language enabled information (knowledge, norms, skills) to be stored outside of genomes –

in brains, and eventually in written records and digital computers. This is sometimes called the transition to

a  techno-cultural evolution, which is orders of magnitude faster than genetic evolution. It represents life’s

computational system offloading some of its processing to inventions like writing and computing. While this

is  far  afield  from classical  biology,  it’s  arguably  a  continuum:  the  same drive  to  preserve  and process

information  that  characterizes  life  now  manifests  in  how  human  society  records  history  or  designs

algorithms. We won’t explore this realm deeply, but it’s a reminder that if we consider life fundamentally as

a computational process, then our current age of AI and biotechnology is just a new domain of that process

– life’s self-computation has bootstrapped itself into new substrates.

The Origin of Life: From Chemistry to Information

No discussion of life’s fundamental nature would be complete without addressing the ultimate transition:

the origin of life from non-life. Here, we are in the realm of hypothesis and experiment without certainty,

but the consensus is that life began when a set of chemical reactions became organized in a self-sustaining,

self-reproducing network – in short, when autopoiesis and heritable information storage first emerged. In

computational terms, this was when  inanimate chemistry began to actively process information, specifically

when it began to use records of the past (initially perhaps molecular templates) to guide future behavior

(the production of more of those templates).

One influential idea is that life’s origin was marked by a  phase transition in information flow – a point

where the system stopped being dominated by mere thermodynamics and started being information-driven.

Walker and Davies (2013) have described the origin of life as the transition where informational constraints

(like a  genetic  code)  took over  from purely  chemical  constraints,  enabling open-ended evolution.  More

concretely, it’s the point where chemical reaction networks began storing information that affected their

kinetics (for example, a replicating polymer carries the information that influences the rate of production of

the same polymer). This is essentially the birth of algorithmic causation in chemistry: outputs (like a template



strand)  feed  back  as  inputs  (catalyst  or  template  for  the  next  generation).  There  is  ongoing  work  to

formalize this. Some researchers talk about “assembly information” or “casual replication” to identify when

a chemical system becomes life-like. As we will discuss in the next section,  assembly theory attempts to

quantify at what point a collection of molecules shows evidence of selection (and thus hidden information)

by  measuring  their  complexity.  An  exciting  application  is  in  astrobiology:  by  measuring  molecules  in

extraterrestrial samples, one might detect those with complexity that is overwhelmingly unlikely to arise by

random chance – a potential biosignature of life’s presence .

Another concept relevant to the origin is the error threshold originally described by Manfred Eigen. Early

replicators (likely  RNA molecules or  their  precursors)  had to be short  because replication errors would

accumulate in longer molecules (this is analogous to the constraint on gene length we discussed earlier). If

a replicator is too long and copying is too error-prone, information cannot be preserved – the system falls

into an “error catastrophe.” Calculations show there’s a maximum genome length for a given error rate

beyond which hereditary information is lost each generation. This implies that the first life likely had to

evolve error-correction mechanisms or higher fidelity replication to break through to larger genomes. A

minor improvement in  fidelity  could have had outsized effects:  one study noted that  a  relatively  small

increase in replication accuracy could allow genomes to grow enough to encode more functions, kicking off

a  virtuous  cycle  toward  complexity .  This  again  is  an  example  of  a  computational  threshold

(information fidelity) gating an evolutionary transition. Crossing that threshold – perhaps via the evolution

of  a  ribozyme  that  proofreads,  or  the  advent  of  double-stranded  DNA  which  is  more  stable  –  would

constitute an “algorithmic upgrade” in early life, enabling it to preserve larger information sets and thus

evolve new capabilities.

Though the origin of life is still not fully understood, current research strongly emphasizes  information:

how did a molecular system begin to store instructions, how did those instructions become self-referential

(templates encoding the machinery that reads the templates), and how was noise in this system controlled?

The leading scenarios (RNA world, metabolism-first, peptide-RNA coevolution, etc.) each grapple with those

questions. The computational perspective doesn’t solve origin-of-life, but it provides language to formulate

hypotheses:  e.g.,  “life  began when a  chemical  network obtained a  primitive  memory (like  autocatalytic

templates)  and a  rudimentary  code that  guided assembly  processes.”  This  is  a  hypothesis  that  can be

explored by experiments – for instance, synthetic biology efforts to create protocells aim to see if we can

assemble  a  system  that  spontaneously  starts  using  information  (like  a  genetic  polymer)  to  direct  its

metabolism  and  reproduction.  If  achieved,  that  would  be  the  ultimate  proof  of  concept  that  life  is  a

computational system: we would have instantiated the algorithm of life artificially.

Quantifying Life’s Information: AIT, Assembly Theory, and Beyond

Thus far, we have described life’s computational nature qualitatively. To elevate this discussion to a rigorous,

PhD-level analysis, we need quantifiable definitions and measures. How can we objectively measure the

“information” or “complexity” in a living system? What formal frameworks allow us to test whether a given

system  is  alive  or  life-like  based  on  its  information  processing?  In  this  section,  we  highlight  three

interrelated approaches that have gained prominence:  Algorithmic Information Theory (AIT) applied to

biology,  Assembly Theory (AT),  and  Constructor Theory’s perspective on life.  Each provides a lens for

quantification:  -  AIT  deals  with  Kolmogorov  complexity  and  algorithmic  randomness,  giving  a  way  to

quantify how complex a biological pattern is in terms of the shortest description or program that produces

it.  -  Assembly  Theory  introduces  the  concept  of  assembly  index,  focusing  on  how  many  steps  of

combination  are  needed  to  build  an  object,  thus  highlighting  evidence  of  selection  or  evolution.  -
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Constructor Theory (especially the “Constructor Theory of Life”) attempts to characterize life in terms of

possible  vs.  impossible  transformations in  physics,  boiling down life’s  requirements  to  the presence of

certain information media and tasks.

Algorithmic Complexity in Biology

Algorithmic Information Theory,  pioneered by Solomonoff, Kolmogorov,  and Chaitin,  marries Shannon’s

information theory with Turing’s computability theory . In plain terms, the Kolmogorov complexity of a

string (like a DNA sequence) is the length of the shortest computer program that can produce that string. A

random sequence has high complexity (no shorter description than itself), while a highly ordered sequence

(like  “AAAA...”)  has  low complexity  (can  be  described  succinctly).  Biological  sequences  and systems are

neither random nor trivial; they have structure, patterns, redundancies, and modularity. AIT offers one way

to try to quantify that structured complexity.

One challenge is that Kolmogorov complexity is uncomputable in general, and also context-dependent (it

depends on the “reference universal Turing machine” chosen). However, researchers have been developing

approximations and related measures that can be applied. For instance, the concept of  logical depth (by

Charles Bennett) distinguishes between randomness and organized complexity by considering how long a

minimal program takes to run to produce the string. A random string has high complexity but shallow

depth (no meaningful structure), whereas a highly organized string (like the digits of π or the genome of E.

coli)  might  have  high  complexity  and  also  high  depth  (it  is  compressible  to  some  extent,  but  that

compression is non-trivial – it encodes meaningful computations). In biology, one could argue that living

systems are those with both high algorithmic complexity and high logical depth – they are not random, but

they  also  cannot  be  described  by  a  very  short  program  (unlike,  say,  a  perfect  crystal  which  has  low

complexity).

Recent attempts to apply AIT include analyzing gene regulatory networks or protein interaction networks

using algorithmic measures. As mentioned earlier, one study pointed out that “most information is in the

connections among genes and not the genes themselves,”  suggesting that the network topology holds

algorithmic complexity that a simple list of gene sequences misses . To capture this, researchers like

Hector Zenil have developed methods of approximating the algorithmic complexity of graphs (networks)

rather  than  linear  strings.  They  use  techniques  like  lossless  compression  or  algorithmic  probability

(estimating  Kolmogorov  complexity  by  searching  for  short  programs  that  generate  the  graph).  Such

approaches have been used to compare the complexity of,  say,  the wiring of  a neuronal  network to a

randomized control, or the structure of a metabolic network to alternative architectures . The results

often confirm that biological networks are optimized in ways that reduce randomness (for robustness) yet

are not overly regular (which would limit adaptability). In other words, life seems to sit in a sweet spot: not

maximal entropy, not minimal entropy, but a poised state of complex, context-dependent order.

Another promising direction is using AIT in origins-of-life studies. Could we detect when a chemical system

crosses from “random soup” to “algorithmically  complex self-organization”?  Sara Walker and colleagues

have  proposed  measuring  changes  in  the  algorithmic  compressibility  of  chemical  reaction  patterns  or

molecular  distributions  as  a  potential  signal  of  life’s  onset.  If  a  bunch  of  organic  molecules  can  be

significantly compressed (because they form repetitive patterns or functional motifs), that might indicate

some generative process (like metabolism or templating) is producing non-random outputs. For instance, a

test  tube  in  which  random  polymers  form  will  have  a  broad  distribution  of  molecular  weights  and

compositions (high entropy), whereas a test tube in which a self-replicating polymer has emerged will show
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a  skewed  distribution  (lots  of  copies  of  the  replicator  and  related  sequences  –  which  is  in  a  sense

algorithmically simpler than a completely random set).  By quantifying that difference, one might detect

life’s algorithmic footprint even without directly understanding the chemistry.

It’s worth noting an intriguing link: some have suggested that assembly theory and AIT are connected.

Indeed, a 2023 preprint formally demonstrated that under certain conditions, assembly index correlates

with measures of compressibility (Shannon entropy of certain distributions, etc.) . Intuitively, both

are capturing the idea of pattern richness. Algorithmic complexity measures pattern in terms of description

length; assembly theory measures it in terms of construction steps. Each unique pattern or subpattern that

recurs in an object (like a repeating motif in a polymer) allows compression (in AIT) and also reduces the

assembly  index (because you can reuse that  part  rather  than build  from scratch).  This  convergence is

encouraging:  it  means different approaches to quantifying life’s  complexity  may be revealing the same

underlying property.

Assembly Theory: Traces of Selection in Molecular Complexity

Assembly  Theory  (AT)  is  a  fresh framework specifically  developed to  handle  the question “what  makes

something likely the product of life, as opposed to chance?” Introduced by Lee Cronin, Sara Walker and

collaborators,  AT reframes objects  (especially  molecules)  in  terms of  their  history.  Instead of  treating a

molecule  as  just  a  static  structure  with  a  certain  entropy  or  complexity,  AT  asks:  how  many  steps  of

combining building blocks are needed to make this molecule? This minimal number of steps is called the

assembly  index (A) .  A  random process  (like  abiotic  chemistry)  might  occasionally  form a  complex

molecule, but the probability drops exponentially with the number of required steps. However, if selection is

at play (as in life), it can produce highly complex objects in a reasonable time by iterative, biased processes.

In other words, a molecule with a high assembly index is extremely unlikely to appear in abundance unless

some evolving system (life) is systematically exploring molecular space and building it.

For example, consider two molecules: one is a simple organic acid, another is a complex lipid or alkaloid

found in cells. The simple acid might be assembled in 2–3 reactions from basic precursors – low assembly

index. The complex lipid might require 10+ specific steps – high assembly index. If you find a lot of the

complex  lipid  in  a  sample,  chances  are  it  wasn’t  random  chemistry;  something  (like  a  cell’s  metabolic

network)  was  stringing together  precursors  in  a  guided way.  Assembly  theory  thus  gives  an empirical

handle: mass spectrometry can detect molecules and, through fragmentation patterns, infer their assembly

index (roughly, how many sub-fragments it can be broken into). Remarkably, experiments have shown that

samples  from  living  matter  (like  bacteria  extracts)  contain  molecules  with  assembly  indices  above  a

threshold rarely if ever seen in non-living samples . This has been proposed as a biosignature test:

send a mass spectrometer to Mars or Enceladus and look for molecules with A beyond, say, 15 – if you find

them, life (or something like it) is the best explanation.

Beyond detection, assembly theory has deeper implications. It suggests a way to quantify selection itself.

In Cronin and Walker’s 2023 Nature paper, they argue that by considering objects in “assembly space,” one

can formally incorporate the causal history (selection processes) into fundamental physics .  They

frame it as not changing physics, but changing what we consider a fundamental object: not point particles,

but these assembly patterns that carry a memory of the past. In assembly space, objects that were shaped

by selection occupy a different region than those formed by chance. This offers a kind of bridge between

biology and physics – making evolution “legible” to physics by encoding it  in the complexity of objects.
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Philosophically, AT posits that the universe allows  open-ended creation of new complex objects (given the

right processes like life), and it quantifies how much “causal effort” went into an object’s existence .

There  is  active  debate  around  assembly  theory.  Some  critics  argue  that  it’s  basically  a  rebranding  of

complexity measures that already exist, or that it conflates information with complexity in a way that could

misidentify non-living phenomena as living (e.g., some crystals or human-made polymers might show high

assembly index,  though proponents would counter  that  context  resolves that).  Others welcome it  as  a

much-needed  practical  tool  for  astrobiology  and  for  quantifying  when  chemical  systems  become

evolutionary. Regardless, it is a valuable attempt to formalize a gradation between non-life and life. We

often assume life is a binary (either it is or isn’t alive), but assembly theory suggests a spectrum: one could

measure how far along something is in terms of assembly complexity. This might correspond to intuition

(viruses, for instance, might sit in an intermediate range – products of life, but not alive themselves, they

have high complexity but can’t generate it autonomously).

In connecting AT to our earlier discussions, note how assembly index essentially captures the imprint of an

algorithmic process. A random process doesn’t create repeated building sequences (each outcome is like

throwing  dice  anew),  whereas  a  biological  (algorithmic)  process  reuses  sub-solutions  and  incorporates

memory  (each  generation  builds  on  the  previous).  The  repeated  substructures  in  molecules  are  like

subroutines in code – they indicate a generative process with state. Thus, AT and AIT are aligned in spirit:

life  uses  algorithms (in  the broad sense)  to  generate  complexity,  and those algorithms leave statistical

fingerprints.

Constructor Theory: Defining Life by Possible Tasks

Turning to a more theoretical angle, Constructor Theory (developed by David Deutsch and Chiara Marletto)

is an emerging formulation of physics that shifts the focus from trajectories of particles to the  ability to

perform tasks. In constructor theory, the fundamental elements are “constructors” – entities that can cause

transformations in other objects without being consumed (a catalyst is an example) – and the laws are

expressed as which transformations are possible or impossible. The Constructor Theory of Life (Marletto

2015) attempts to capture what is special about life in these terms. Marletto concluded that for life (self-

reproduction  with  open-ended  evolution)  to  be  possible  under  no-design  laws  (no  teleology  built  into

physics), the laws of physics must permit information media that can be reliably copied . In essence,

the only “non-trivial” requirement for life in constructor-theoretic terms is the existence of digitally coded

information that can act as a constructor for itself when combined with some machinery (the “vehicle”).

This is a rather elegant statement: it says that life will emerge in any universe where there is a medium (like

DNA,  or  computer  memory,  or  any  stable  set  of  states)  that  can  act  as  a  recipe and  drive  its  own

reconstruction through catalysts. The separation of replicator (information) and vehicle (the rest of the cell)

echoes ideas from the 1970s (Dawkins’ replicator-vehicle concept), but here it is derived as a requirement

from fundamental principles.

What does this give us? It provides a potential universal definition of life: any system that contains a self-

propagating  constructor  that  carries  a  program  (information)  for  making  itself  is  alive.  This  covers

terrestrial life (DNA/RNA-based cells), and potentially could include alien life (maybe not nucleic acids, but

some other digital polymer) or even artificial life (a self-reproducing robot with a blueprint).  It  excludes

systems  that  don’t  have  a  mechanism  for  high-fidelity  information  copying.  For  instance,  a  simple

autocatalytic chemical cycle that makes more of itself but without distinct information carriers might not
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qualify because it cannot undergo open-ended evolution – it will just keep making the same thing. Life, by

this definition, requires a heritable memory (with variation) that leads to selection and evolution.

Constructor theory also addresses the long-standing question of  why life is not ruled out by physics.

Some early thinkers found life almost mysterious in a physical sense – how do highly ordered entities come

about without violating thermodynamics? Constructor theory’s answer: life is not miraculous; it’s allowed

because the laws of physics do permit certain complex tasks (like self-replication) to be performed, given

the  right  catalysts.  If  the  laws  didn’t  allow stable  information-bearing  structures,  life  would  indeed be

impossible. But our universe has at least one such structure: sequences of nucleotides (and perhaps many

more, since we discovered humans can engineer DNA-like polymers or other digital systems).

One might wonder how this abstract theory ties back to practical science. One payoff is conceptual clarity: it

emphasizes that the core of life is  information that does something.  It’s  not just a pattern (a crystal  is a

pattern but doesn’t do anything), and not just a process (fire is a self-sustaining chemical process but has no

information memory).  It’s  a  synergy of  information and process:  a  program executed by  a  machine that

produces that same program in new machines. If we translate that to computation: life is like a program that

prints its own code (with occasional mutations) and builds a new computer to run it. No ordinary software

we write has that property (unless we intentionally make self-replicating code, like a virus). Life discovered

that trick and, in doing so, unleashed an exponential growth and diversification we see in evolution.

The constructor perspective can also guide synthetic biology: it tells us that to create life from scratch, we

must create a physical system where some configurations act as self-perpetuating constructors. This likely

means getting a chemical system to the point of having a genetic subsystem (information) and a metabolic

subsystem  that  together  form  a  closed  loop  of  construction.  It’s  not  enough  to  have  a  self-copying

molecule;  it  must  construct an  entire  self  (which  for  a  cell  includes  membranes,  metabolism,  etc.).

Conversely, it implies that if we ever encounter something like a crystal that catalyzes its own growth, it

wouldn’t count unless it also encodes a blueprint for its own formation distinct from just being a template.

Life’s complexity in this view stems from the need to be a universal constructor (in von Neumann’s sense) –

containing a description and a means to copy that description and implement it.

In summary, these formal approaches (AIT, assembly theory, constructor theory) each reinforce the notion

that life is characterized by non-trivial information structure. Life is not high entropy (random), but also

not  low  entropy  (crystalline  order);  it’s  algorithmically  structured.  Life  produces  objects  of  far  greater

complexity  than  unguided  chemistry  would .  Life  persists  through  time  by  maintaining  a  chain  of

information  that  is  copied  and  transformed  but  remains  related  (heredity).  All  these  can  be  framed

quantitatively and logically. We are beginning to see actual numbers and equations enter what was once

purely philosophical territory. For example, assembly theory can assign a numerical assembly index to a

molecule; AIT can estimate bits of algorithmic information in a genome; constructor theory can state life’s

criteria in logical postulates. This formalization is a sign of the field maturing. In coming years, we might

see a convergence where these frameworks inform each other – perhaps a unified theory that tells us, say,

which assembly indices correspond to the emergence of open-ended evolvability, or how the algorithmic

complexity of a protocell’s dynamics correlates with its fitness.

Discussion: Known Unknowns and Outlook for a Theory of Life

We have traversed a wide landscape – from cells as self-maintaining information processors, through the

major evolutionary innovations that reconfigured life’s computational capacities, to theoretical attempts to
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capture life’s essence in equations and measures. Yet, despite this progress, much remains unresolved. In

this  section,  we discuss  some open questions  and challenges  for  the  view of  life  as  a  computational/

informational phenomenon. These include both known unknowns – specific things we know we don’t yet

understand – and  potential unknown unknowns,  deeper gaps that current paradigms might not even

fully recognize.

1. The Origin of Life – the gap between chemistry and computation: While we can outline scenarios, we

still  lack a definitive answer to how inert  chemistry on the early  Earth bootstrapped into the first  self-

replicating, information-bearing system. Is there a smooth continuum from autocatalysis to genetic code,

or was there a hard threshold (a “spark” where information suddenly took over)? Experiments have made

RNA molecules that can replicate themselves with some accuracy, but not enough to undergo open-ended

Darwinian evolution. Could there have been intermediate systems – e.g.,  networks of mutually catalytic

polymers – that gradually acquired information-like properties? This remains a frontier. The computational

perspective suggests looking for the first appearance of program-like behavior in chemical systems. One

testable hypothesis is that before fully autonomous genomes, there might have been chemical ecosystems

in which information was distributed – like compositional genomes, where the relative concentrations of

molecules carry hereditary information. Detecting or recreating such intermediate states in the lab is an

ongoing challenge.

2.  The  nature  of  biological  information  –  semantic  meaning  vs.  syntax: Information  theory  treats

information as bits devoid of meaning. But genetic information obviously means something to the organism

(it encodes functional proteins, etc.), and neural information has meaning (representations of stimuli). How

can we bridge the gap between the semantic aspect of biological information and the formal, syntactic

measures?  Some  argue  that  meaning  in  biology  arises  from  function:  a  sequence  has  meaning  if  it

contributes to survival. Can we formalize that? Assembly theory takes a step by linking complex structure to

a history of selection (function left a trace). Others have tried to quantify  functional information – roughly,

how much of the information in a sequence is actually used for a defined function . For example, only

certain  mutations  in  a  gene  affect  its  function;  the  rest  might  be  silent  or  redundant.  The  functional

information would count just the crucial bits. This area is still developing. A breakthrough here would be

being able to look at a genome or an ecosystem’s information and quantify not just its complexity, but how

much  of  that  complexity  is  meaningful (propagates  causally  into  the  future  of  that  system).  This  has

implications for understanding things like junk DNA (is it truly junk or does it carry some subtle regulatory

meaning?) and for astrobiology (could we tell a random polymer apart from one that encodes something

useful?).

3. Reconciling analog and digital information: Biological systems use a mix of digital information (genes,

discrete  signals  like  action  potentials  in  neurons)  and  analog  information  (metabolite  concentrations,

gradients,  continuously  varying  membrane  potentials).  How  do  these  interplay  in  life’s  computations?

Digital systems have advantages for long-term memory (robust copying of genes), whereas analog systems

are great for quick, nuanced responses (homeostasis, dynamic physiological regulation). The integration of

the two is seen for instance in gene regulatory networks, where continuous signals eventually flip a digital-

like switch for developmental decisions. One open question is whether a purely analog life form is possible

or whether digitization (as in a genetic code) is a requirement for indefinite complexity. Constructor theory

argues digital information is necessary for accurate replication . Is that a fundamental truth, or just a

truth for Earth-life? Perhaps any complex life must evolve a code – an alphabet of some kind – to break

away from the fuzziness of analog inheritance. This could be tested indirectly by studying if there are any
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organisms (maybe hypothetical or simpler ones) that replicate without a genome-like template and still

manage to evolve complexity (so far none known).

4. The limits of biological complexity: As life as a whole is an open-ended computational process, one can

ask:  are there limits to the complexity it  can achieve? Some theorists speculate about a possible  upper

bound – maybe life cannot get arbitrarily complex because of fundamental constraints (energy availability

per bit of information, error rates, finite resources, etc.). Others see no clear ceiling; humans might just be

one  step  and  future  life  (biological  or  AI  or  hybrid)  could  reach  far  higher  levels  of  complexity  and

integration. Assembly theory implies that as long as selection continues, assembly index can keep growing,

meaning more complex structures can keep appearing . However, practical limits might intervene (e.g., if

complexity growth outpaces error correction, systems might become unstable – there could be an error

catastrophe at higher levels of organization too, not just at the gene level). Additionally, the evolution of

intelligence and technology has created a situation where life’s complexity is now expanding outside of the

biological medium (into culture and machines). How do we account for that in our definitions? If an AI we

create becomes self-improving and self-replicating, is that just a continuation of life’s computational process

in a new substrate? Many would say yes. This leads to almost philosophical questions about the destiny of

life in the universe: is it to spread and maximize information processing (as some interpretations of the

Fermi paradox suggest – maybe advanced life becomes invisible because it turns inward to computation)?

These remain speculative but stem naturally from the view of life as computation.

5. Unknown unknowns – new principles awaiting discovery: Finally, we should acknowledge that our

current frameworks might be missing something fundamental. Biology has surprised us repeatedly. For

example, epigenetics revealed that heritable information is not just DNA sequence; cells transmit chromatin

states  and  small  RNAs  across  generations  sometimes.  Quantum  biology  is  a  nascent  field  examining

whether quantum coherence plays non-trivial roles in things like photosynthesis or navigation in birds. If

quantum effects are harnessed by life (still debated), does that add a layer to life’s information processing

that  we  haven’t  accounted  for  in  our  classical  models?  Perhaps  life  is  even  more  computationally

sophisticated, edging into quantum computation or other realms. Another possible unknown is the role of

emergence at large scales – for instance, Gaia hypothesis type ideas where life as a whole planet behaves

like a single self-regulating system. Is there “computing” happening at the ecosystem or biosphere level that

is  more  than  the  sum  of  individuals  (e.g.,  regulating  climate  within  habitable  bounds)?  Some  models

indicate  the  biosphere  does  have  self-stabilizing  properties,  but  quantifying  that  as  computation  is

extremely challenging. 

We might also be missing what we haven’t  yet observed –  alien life.  All  our theories are based on one

example  (Earth).  Alien  life  might  show  information  processing  in  forms  we  haven’t  conceived:  maybe

distributed in planetary magnetic fields,  or using exotic chemistry that doesn’t  have discrete genes but

something analogous. Our definitions need to be broad enough to encompass that, yet specific enough to

exclude non-living phenomena.  It’s  a  delicate balance,  and encountering a second sample of  life  (even

microbial) beyond Earth would hugely inform the correctness of our computational thesis.

Conclusion: Toward a Unified Theory of Life’s Information

In this narrative review, we have woven together insights from biology, physics, and information theory to

bolster the thesis that life is, at its core, a computational system – an information processing engine

harnessed to a thermodynamic drive. We have seen that life’s defining characteristics can be reframed in

informational terms: - Self-maintenance (Autopoiesis) – Living systems are self-generating networks that
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use  information  (e.g.,  genetic  instructions,  feedback  signals)  to  sustain  their  organization .  -

Replication and Heredity – Life propagates by copying information (genomes) with high fidelity, employing

error-correcting mechanisms to preserve that information across time . -  Functional Complexity –

Organisms  exhibit  multilayered  complexity  (molecular,  cellular,  organismal,  ecological)  arising  from

information integration across scales . Each higher level encodes and constrains information from lower

levels, producing emergent properties. -  Adaptive Responsiveness – Through computational-like sensing

and control circuits, life responds to environmental inputs in pursuit of stability or growth (from simple

chemotaxis in bacteria to complex cognition in animals) . -  Open-Ended Evolution – Life’s information

systems (like DNA) allow for unbounded exploration of possibilities via mutation and recombination, with

selection feeding back to accumulate useful algorithms (biochemical or behavioral) in the population over

time. This evolutionary process itself can be seen as a computation (a search algorithm in the space of

possible organisms).

By grounding these concepts in literature and recent findings, we have strengthened the argument against

the notion that “life as computation” is a mere metaphor. It  is,  in fact,  mechanistic:  life literally encodes

information  and  performs  computations  (in  the  broad  sense  of  transforming  information  to  achieve

function) as an inherent part of its operation. And it is  quantitative:  with tools like assembly theory and

algorithmic complexity, we can start to measure just how much information processing is going on, and

how life’s complexity compares to other physical processes.

One of the salient points emerging from this review is the importance of distinguishing different senses

of computation in interdisciplinary dialogues. When a biologist hears “the cell is a computer,” they may

recoil, imagining a reduction of life to a simplistic circuit diagram. But as we have clarified, what is meant is

much richer: the cell is a biochemical computer with self-fabrication capabilities, nothing like your desktop PC

yet  performing  analogous  logical  and  control  functions  to  achieve  its  self-perpetuation.  As  science

progresses, these analogies are turning into detailed mappings. For example, the circuitry of the cell cycle

(which controls cell division) has been mapped out in detail and shows switches, timers, and feedback loops

that  can  be  described  with  the  mathematics  of  control  theory  and  computation.  In  synthetic  biology,

researchers now design actual logic gates and oscillators using genetic parts, effectively programming cells

to perform new computations (like detecting a cancerous state and releasing a drug). This is a profound

confirmation that the computational view has teeth: if we can program life, it means we have understood

some of its programming logic.

Another key takeaway is the unification of perspectives:  energy, information, chemistry, and evolution

are all  facets  of  one integrated narrative.  The origin  of  life  required not  just  chemistry  in  the right

setting, but also the emergence of information-bearing structures and a thermodynamic engine to run the

first “programs” of life. Major evolutionary transitions, like the advent of eukaryotes or multicellular life, can

be seen as upgrades to life’s information processing capacity, often enabled by new energy regimes or new

ways to manage entropy. Today, as we explore life-like behavior in other systems (e.g., computer viruses, AI,

or complex automata), we continually use biological metaphors (we speak of computer “immune systems”

or  “evolutionary  algorithms”).  This  is  not  coincidence  –  it  reflects  a  deep  parallel:  evolution  is  nature’s

algorithm for designing systems, and conversely algorithms we design can mirror evolutionary strategies.  We

stand at a point where biology and computer science and physics are converging on common ideas of

information and complexity.

What  lies  ahead?  In  practical  terms,  the  computational  perspective  on  life  suggests  several  future

directions:  - In  origin-of-life research,  design experiments that track information-theoretic metrics (like
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Shannon entropy, algorithmic complexity, assembly index) in replicating chemical systems. Success would

be indicated by an inflection in these metrics, signifying a transition to information-driven growth . If we

can achieve that in the lab, it’s akin to “seeing life’s software boot up.” - In astrobiology, refine informational

biosignatures. As mentioned, assembly index is one; others might include detecting non-random patterns

in atmospheric gases (information imprinted in planetary scale),  or listening for structured signals.  The

computational theory of life suggests life anywhere will need some form of digital information system, so

looking for evidence of such structures (e.g., polymers with repetitive motifs) is a promising path . - In

biophysics, push stochastic thermodynamics further to identify fundamental limits: what is the minimum

energy per bit for a cell to maintain its state? How close do cells get to Landauer’s bound when replicating

their  genome  or  when  firing  neurons?  Understanding  these  could  lead  to  insights  into  why  certain

biological designs prevail (maybe cells evolved to be energy-information optimal). - In evolutionary theory,

incorporate  algorithmic  models.  Evolutionary  biology  has  long  used  concepts  like  fitness  landscapes;

adding an information dimension (like considering the entropy of those landscapes or the computational

complexity of reaching certain adaptations) could help explain phenomena like evolvability or stasis. The

idea  of  “algorithmic  phase  transitions”  might  find  other  applications  (are  there  points  in  evolution  of

complexity where progress stalls until a new representation or mechanism appears? Perhaps the origin of

learning and brains was another such threshold). - In philosophy of biology, revisit definitions of life. Our

review supports a definition along the lines of: Life is a self-sustaining chemical system capable of processing

information  to  self-replicate  and  evolve .  We  might  refine  that  to  include  the  notion  of  hierarchical

information (since even a virus processes information in some sense, but it is not self-sustaining without a

host). The challenge is to be inclusive of weird life forms yet exclusive of non-life. The computational view

helps by focusing on what life does, not just its components: life continuously performs computations that

maintain its complexity. So perhaps any system that can compute its continued existence (predict and act to

prevent its dissolution, and make offspring that do the same) should be considered alive.

In closing, the interdisciplinary synthesis presented here – spanning autopoiesis to assembly theory – is

part of a broader trend: biology is increasingly a science of  information. Just as 20th-century biology was

revolutionized by discovering the molecular basis of genes (the structure of DNA, the genetic code), the 21st

century is illuminating the informational basis of whole organisms and ecosystems. We are learning to read

life’s algorithms, edit them (with CRISPR and synthetic biology), and even design new ones. This review has

attempted to narrate how our understanding of  life’s  fundamental  mystery  –  “What  is  life?”  –  is  being

reshaped by viewing living beings as computational systems of remarkable sophistication. In doing so, we

directly  addressed  past  criticisms  by  clearly  distinguishing  metaphor  from  mechanism  and  by

substantiating claims with quantitative theory and empirical data. Far from being an oversimplification, the

computational perspective is proving to be a unifying framework that connects disparate facets of life into a

coherent picture . 

Life’s story, then, can be seen as the story of information in the universe: how it emerges, self-organizes,

perpetuates, and complexifies. It is a story that is still unfolding – both on Earth and, potentially, elsewhere.

By continuing to  explore life  as  a  computational  system,  we not  only  inch closer  to  answering one of

humanity’s oldest questions, but we also stand to gain practical mastery over the processes that constitute

living, potentially guiding the future evolution of life (biological and artificial) in a direction of our choosing.

The ultimate test of this paradigm will be its ability to predict and perhaps create new life. If life is truly an

algorithm, then in principle, once we understand it, we should be able to run it on purpose. Until then, life

remains the most sophisticated “program” we know – one we are slowly learning to decode and, as we have

reviewed, increasingly recognize as the computation that it is.
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